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Abstract

Pickands constants play an important role in the exact asymptotic of extreme values for
Gaussian stochastic processes. By the generalized Pickands constant 3#, we mean the limit
# = lim 20D
I—x
where (T ) = Eexp(max;epo, (V2n(t) — ai(t))) and 7(¢) is a centered Gaussian process with
stationary increments and variance function o;";(t).

Under some mild conditions on a,z,(t) we prove that 4%, is well defined and we give a compar-
ison criterion for the generalized Pickands constants. Moreover we prove a theorem that extends
result of Pickands for certain stationary Gaussian processes.

As an application we obtain the exact asymptotic behavior of y(u) = P(sup,, , {(t) — ¢t > u)
as u — 0o, where {(x) = fo" Z(s)ds and Z(s) is a stationary centered Gaussian process with
covariance function R(r) fulfilling some integrability conditions. (©) 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Pickands III (1969a, b) found an elegant way of computing the exact asymptotics of
the probability P(max,ejo, 71 X(¢) > u) for a centered stationary Gaussian process X(t)
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with covariance function R(#) =1 — |¢|* + o(|#]*) as t+ — 0, «€(0,2] and R(¢) < 1 for
all £ > 0. For such a process he proved

P (txen[%])((z) > u) = A, TP P(u)(1 + o(1)) as u— oo, (1.1)

where H#p,, is the Pickands constant and ¥(u) is the tail distribution of standard
normal law. Recall that #% , is defined by the following limit:

Ay, = Tlim E exp(max,efo, 71V2By2(t) — Var(By(t )))’

— 00 T

(1.2)

where B,/ () is a fractional Brownian motion (FBM) with Hurst parameter /2, that
is a centered Gaussian process with stationary increments, continuous sample paths
and variance function Var(B,»(t)) = ¢*. Pickands proved (1.1) using the double sum
method, that is by breaking the interval [0,77] into several subintervals on which the
following asymptotics may be applied: for each T > 0

P ( sup  X(¢) > u) = Hp,,(T)P(u)(1 + o(1)) (1.3)
tefl

0,Tu—2]

as u — 00, wWhere
Hp,,(T) =Eexp (fgg;l (V2B (t) - Var(Ba/z(t)))) . (1.4)

Asymptotics (1.3) is a useful tool for computing the exact asymptotics in extreme value
theory for a wide class of Gaussian processes (see Piterbarg, 1996). Unfortunately it
does not cover all the cases interesting in applications (see for example the class of
Gaussian integrated processes considered in Debicki, 1999). In particular the stationarity
assumption seem to be too strong. We present an extension of (1.3) in Section 2
(Theorem 2.1).

It turns out that the asymptotics obtained in Theorem 2.1 yields a natural extension
of Pickands constants. Namely instead of FBM By;(¢) in (1.2) there appear more
general centered Gaussian processes #(¢) with stationary increments.

Throughout this article #(¢) is a centered Gaussian process with stationary increments,
a.s. continuous sample paths, 7(0)=0 and such that the variance function Var(n(¢))=
a5 (1) satisfies

Cl1 o'f;(t) € CY([0,00)) is strictly increasing and there exists & > 0 such that

2,
: ta, (1)
limsup —— < ¢;
t—o0 Gﬁ(t)

(1.5)

C2 o3(t) is regularly varying at 0 with index o € (0,2] and 073(¢) is regularly varying
at oo with index o €(0,2).

In the paper we use the notation 6%(t) or ¢*(¢) for the derivatives of o3(¢).

Note that C1 is strongly related to C2. In fact if (ff,(t) satisfies C1 in such a way

that limy—,cc 07(¢) = 0o and lim/—c td,zl(t)/ag(r) =¢, then g(¢) is regularly varying
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at oo and 2. = € (see Bingham et al.,, 1987, p. 59). Conversely if a,zl(t) is regularly

varying at co and o"%(t) is ultimately monotone, then (1.5) holds.
For 5(¢) that satisfies C1-C2 define

— _ .2
Hy(T) = Eew(}gﬁ%(\/ﬁnm w») : (1.6)

More generally for independent centered Gaussian processes with stationary increments
m(t),...,nn(2) that satisfy C1-C2, where the indices of regularity of variance functions
may differ for each process, we define

N N
| 2 1,
(1) = Eexp ((n,...,z?)ae)fo,n” ( N ; i) = ; oy, (4 )>> - 4D

Note that in a special case, when n(z) = Byp(t) and N =1, we obtain the constants

,,,,,

H(T)

provided that the limit exists. In Section 3 (see Theorem 3.1) we prove that under
conditions C1-C2 this limit exists, is positive and finite. Moreover in Theorem 3.2 we
give a comparison criterion for generalized Pickands constants.

With n(¢) we associate a family {X;,(7),u> 0} (indexed by u > 0) of centered
Gaussian processes, where the relation between 7(7) and X, (¢) is given by assumption
DO presented in Section 2. By the attached bar we always mean the standardized
process, that is X (1) =X (t)/ox ().

In Section 2 (Theorem 2.1) we extend asymptotics (1.3) to a standardized family of
Gaussian fields {X,;,(¢),u > 0} that satisfy condition DO.

Combination of Theorem 2.1 with the double sum method yields new exact asymp-
totics in extreme value theory. In particular in Section 4 we present Theorem 4.1
which extends results of Piterbarg, 1996 and enables us to obtain exact asymptotics
for some families of Gaussian processes {X;..(1),u > 0}, where for sufficiently large
u the variance function aﬁrﬂ_u(t) attains maximum at a unique point f,,.

Recently the asymptotics of

Y(u)=P (supC(l) —ct > u)

120

for a centered Gaussian process {(¢) with stationary increments and ¢ > 0 was studied

in many papers; see e.g. Norros (1994), Debicki and Rolski (1995, 2000), and Kulka-

mi and Rolski (1994). The problem of analyzing y(u) stemmed from the theory of

Gaussian fluid models, where the following cases are of special interest:

e {(x)= jg Z(s)ds, where Z(s) is a stationary centered Gaussian process with covari-
ance function R(¢)=[EZ(0)Z(¢) fulfilling some integrability conditions; we call such
the case integrated Gaussian (1G),

e {(x) = B,n(t) being a fractional Brownian motion with Hurst parameter «/2, where
a €(0,2).
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The last model was recently studied by Hiisler and Piterbarg (1999) who obtained
exact asymptotic of (1) for {(x) being a fractional Brownian motion; see also Narayan
(1998). Theorem 4.1, presented in Section 4, enables us to obtain the exact asymptotics
of W(u) for a class of IG processes that play an important role in the fluid model theory
and is not covered by the results of Hiisler and Piterbarg (1999). Namely we focus on
the case where {(x)= jg Z(s)ds possesses the short range dependence (SRD) property,
that is the covariance function R(¢) of Z(¢) fulfills

SRD.1 R(t) € C([0,00)), lim;— 0 tR(2) = 0;

SRD.2 [y R(s)ds > 0 for each ¢ > 0 and = o0;

SRD.3 ;7 s?|R(s)| ds < oo.

We exclude from the following considerations the degenerated case R(0) =0. We
comment on assumptions SRD and give the exact asymptotic of y(u) for {(t) € SRD
in Section 5.

2. Extension of Pickands theorem

We write {X.,(t),u > 0} for the family of centered Gaussian processes {X;u(2):
t 20} (u>0) and assume that for each u > 0 the Gaussian process X;,(¢) has con-
tinuous trajectories. The family {X;..(¢),u > 0} is related to a Gaussian process 7(t)
with stationary increments and variance function ag(t) that satisfies C1-C2 in such a
way that the following assumption holds

DO There exist functions A(u) and f(u) such that

1— COV(X,,;M(I),Xn;u(S))
sup -

- 1l —0
5,t€J(1t) 0727(|t - S|)/f2(u)

as u — 00, where J(u)=[— 4(u), 4(u)] and n(t) is a centered Gaussian process with
stationary increments and variance function 0’,2,(2‘) that satisfies C1-C2.

Remark 2.1. The assumption that a,zl(t) is strictly increasing ensures that asymptotically
(for large u) Cov()?,,;u(t),)?,,;,,(s)) is a decreasing function of |# — s| for s,z €J(u). It
plays a crucial role in the technique of the proof of Theorems 3.1 and 4.1 (Lemmas
6.1 and 6.2).

In the sequel we present families of Gaussian processes that satisfy DO.

Example 2.1. Assumption DO covers the class of Gaussian processes analyzed by
Pickands 111 (1969a). Namely let X(t) be a stationary centered Gaussian process
with covariance function R(t) such that R(t)=1—|t|* + o(|t|*) as t — 0 (x €(0,2]).
Straightforward calculation shows that X (t) satisfies DO with n(t) =B, (t) (and thus
oa(t)=1t|"), A(u) such that lim, ..o A(u)=0 and f(u)=1. This immediately implies
that, for a given function h(u) > 0, the family {X..(t) = X(t/h(u)),u} satisfies DO
with 1(t) = Bup(t), A(u) such that lim,_eo A(u)/h(u) =0 and f(u) = h**(u).
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Presented in this section Theorem 2.1 enables us to relax assumption that X(¢) in
(1.3) is stationary (which in view of further considerations is too restrictive) and to
give the exact asymptotic for families of Gaussian processes {X pu(t)} for which the
structure of covariance function changes with parameter ». In Example 2.2 we present
such a family. This family plays a crucial role in the rest of the paper.

Example 2.2. Consider a centered Gaussian process {(t) with stationary increments
and the variance function o";é(t) that satisfies C1-C2. Define Xy, (t)={(h(u)-+1t) where
h(u) is such that lim,—.oc h(u)=00. In the following lemma we show how the structure
of covariance function of X ,(t) depends on u, appropriately satisfying DO.

Lemma 2.1. If {(¢) is a centered Gaussian process with stationary increments that
satisfies C1-C2, then for h(u) such that lim,_. h(u) = oo, the process X,(t) =
(W) + t) satisfies DO with f(u) = \/ia;(h(u)), n(t) = {(t) and A(u) such that
limy,— 00 A1) /h(1) = 0.

Proof. Let s < t. From the definition of X, ()
_ - _ (ag(h(u) + 1) — ar(h(u) + )
COV(Xr];u(z)aXr];u(S)) 1 - 20_{(}[(”) +s)0'§(h(u) + t)

ak(|t —s])
20¢(h(u) + s)or(h(u) +t)
Since o¢(¢) is regularly varying at oo with index oo €(0,2) it suffices to show that

Wi/W> — 0 uniformly for s,t €[ — A(u), A(u)] as u — oo. It follows from the fact that
for sufficiently large u

W (odlh)+1) —or(h@)+5))? _ (GHhu)+1) = aj(h(u) +5))
W, a3(|t —s]) 3|t = s])(or(h(u)+1) + o (h(u)+5))Y

=W, — W, 2.1)

(T3(h(u) + t) — a2 (h(u) + 5))
403(]t — s|)az(h(u) — A(u))

1 |t — S|d§(h(u) +p) 2
—Z<Gdt—ﬂwdmm—Aw»> (2.2)

<& (Gg(h(u) +p) |t—s )2

(h(u)+p) oc(ji—s])

where from the mean value theorem there exists p € [s,¢] such that (2.2) is satisfied.

Inequality in line (2.3) is a consequence of the fact that by CI, for sufficiently large
u, there exists £ > 0 such that d%(h(u) +p)< e(of(h(u) + p)/(h(u) + p)).

Combination of (2.3) with the fact that g¢(¢)/¢ is regularly varying at co with index

(%00/2) — 1 < 0 implies that in order to complete the proof it is enough to show that

A

(23)

lim sup

< 00. 24
w0 0¢(x) 24)
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Since

a:(1)or(x) = Cov({(1),{(x)) = (a7(1) + 07(x) = 02(

1-x]))/2,
then for sufficiently small x > 0
ag(l) - 0;3‘(1 —x) < 20:(1)o(x). (2.5)

From the mean value theorem for each x there exists py €[0,x] such that a?(l) -
Jg(l —x) =xa':t(l — px). Combining it with (2.5), for sufficiently small x > 0, we get
x/o:(x) < 40,(1)/63(1), which implies (2.4).

This completes the proof. O

Remark 2.2. Families of Gaussian processes considered in Example 2.2 appeared in the
analysis of some Gaussian fluid models (Massoulie and Simonian, 1997). Logarithmic

asymptotics of supremum of such families of Gaussian processes was obtained by
Debicki (1999).

We need the following notation. Let X ma(t)s X nz;l,(t),...,)? nwau(f) be independent
families of centered Gaussian processes that satisfy DO with common A(u) =T > 0
and f(u). Define

N
1 _
4Y)11...‘,7]N;u(t1,-~-,tN):\/N§ X)],»;u(ti)-
i=1

Theorem 2.1. Let n(u) be such that lim,—,.o n(u) = oo and limy—,o f(u)/n(u) = 1.
Then

P( sup )?ql,,‘_,,m;u(tl,...,tN)>n(u))
(n

..... t)Ef0, T

=, (T)P(u))(1 +0o(1)) as u — oco. (2.6)

Proof. We present the proof of Theorem 2.1 in Section 6.1. [

3. Generalized Pickands constants

In this section we define and study properties of generalized Pickands constants.
We begin with a subadditivity property of 5, (7).

Lemma 3.1. If ni(t),...,nn(t) are independent centered Gaussian processes with
stationary increments that satisfy C1-C2, then for all T € N

H oo (T) < TNH (1), (3.1)

.....
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Proof. The complete proof is presented in Section 6. [

In the rest of this section we concentrate on the one-dimensional case of 5#,(T). Note
that the same argument as in the proof of Lemma 3.1 yields 4, (x+y) < 76, (x)+5(»)
for all x, y > 0.

The main result of this section is given in the following theorem.

Theorem 3.1. If the variance function of,(t) of a centered Gaussian process n(t) with
stationary increments satisfies C1-C2, then

Im m
T—o0

=M, (3.2)
where A, > 0 and is finite.
Proof. The proof of Theorem 3.1 is given in Section 6.2. O

If #(t) = By2(2) is a fractional Brownian motion with Hurst parameter x/2 (« € (0,2)),
then it is known that Theorem 3.1 holds (see Piterbarg, 1996, p. 16, Theorem D.2).
H#%,, are known in the literature as the Pickands constants.

By the generalized Pickands constants we mean the constants ¢, introduced in
Theorem 3.1.

In the following theorem we give a criterion that enables us to compare the gener-
alized Pickands constants J£.

Theorem 3.2. Let 1n,(¢),n2(t) be centered Gaussian processes with stationary incre-
ments that satisfy C1-C2. If for all t 2 0

oy (1) < a7, (1), (3.3)
then

Hy, < Hy. (34)
Proof. The complete proof is presented in Section 6.3. O

Remark 3.1. Observe that the conclusion of Theorem 3.2 holds also for #, = By(2)
(that is for a%(t) = t?). The proof of this fact is analogous to the proof of Theorem
3.2 with the exception that instead of X f;?u(t) we take X ((1 4 8)¢/(v/2u)), where X(t)
is a stationary Gaussian process with covariance function R(¢) = exp(—|¢|*).

Corollary 3.1. If the variance function ofl(t) of n(t)= f(f Z(s)ds satisfies C1-C2, where
Z(s) is a stationary centered Gaussian process with covariance function R(t), then
R(0)

Hy < 4| —.
v
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Proof. Note that
t ot
O'rz,(t) = / / Cov(Z(v), Z(w))dvdw < R(0)f* = R(O)o‘lz?l(t).
0 Jo

Thus from Theorem 3.2 and Remark 3.1 %, < ¢ /ROB, Since # /—-R(O)BI(T)=
Hp,(v/R(O)T), then # s, = /R(0)#3,. Hence

R(0
Hy < H ROB = VR(0)HAp, = —7;—), (3.5)
where (3.5) follows from the fact that #%, = 1/y/%. This completes the proof. [

In the following corollary we find an upper bound for S, in the case of n(t) with
covariance function G,ZI(t) fulfilling some integrability conditions.

Corollary 3.2. If ()= fot Z(s)ds satisfies SRD.1, SRD3 and R(t) = 0 for each t = 0,
where Z(t) is a centered stationary Gaussian process with covariance function R(t),
then

H#, <2/ R(s)ds.
0

Proof. Let 7=2 f0°° R(v)dv. From SRD.1, SRD.3 and the fact that R(z) = 0 for each
t = 0 we infer that

-l pS
0';?'](1)=2/ / R(v)dvds
0Jo

= Tt——2/ 1:R(u)dv+2/ (v — O)R(v) dv (3.6)
0 t
S Tr=0lpy (1) (3.7)

and #n(t) satisfies C1-C2 with % =2 and o = 1.
Analogous considerations as in the proof of Corollary 3.1 yield

H g, (T) = Hi,(1T). (3.8)

Since #3,, = 1, then combining (3.8) with (3.7) and Theorem 3.2 we complete the
proof. [

4. Double sum method

Theorem 2.1 enables us to obtain exact asymptotics for some families of Gaussian
processes with variance function that attains its maximum at a unique point.

For the introduced in Section 2 family {X;.(f);u > 0} of centered Gaussian pro-
cesses we additionally assume that for sufficiently large u > 0 the function oy, ()
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attains its maximum at a unique point #, with 0 < #, < oco. Without loss of generality we
assume 0'}(”'“(1,4) = 1. Furthermore we claim that {X,;,(¢);u > 0} satisfies the following
conditions.
D1 Condition DO is fulfilled for (t,8):=(t + t,,5 + ).
D2 There exist f > 0 and a function g(«) such that
sup - O'X,,;u(t + 1)
s,t€J(u) |t|ﬂ/g2(’u)

D3 f(u)/g(u) — 0 as u — oo.

-1 —=0 asu— 0.

Theorem 4.1. If the family {X,.(t)} satisfies D1-D3 with A(u) = (g(u)log(n(u))/
n(u))?#, where n(u) is such that lim,_,e n(u) = oo and lim,— o f(u)/n(u) =1, then

24, (1/B)

B (A@) ™ P ())(1 +o(1)) (41

P ( sup Xyt + 1) > n(u)) =

1€J(u)

as u — 00 and A(u) = (n(u)/g(u))**.
Proof. The proof is given in Section 6.4. [

Remark 4.1. Note that, under conditions of Theorem 4.1, if J(u) = [0,(g(u)

log(n(u))/n(u)¥P], then P(sup,e;q)Xoult + 1) > n(w)) = A(T(1/B)/B)Au))™!
Y(n(u))(1 +o0(l)) as u — 00.

In the next theorem we present a special case of Theorem 4.1, where we assume that
in condition D1 we have #(t) = B,(t) for « €(0,2]. The property of multiplicativity
of the variance function aéw(t) =" of fractional Brownian motion B,/(¢) enables us
to relax the assumption that f(u) in D1 is of the same order as n(u).

Theorem 4.2. If the family {X,.(t)} satisfies D1-D2 with n(t) = Byp(t) for o €(0,2]
and A(u) = (g(u) log(n(u))/n(u))¥E, where n(u) is such that limy,_,eo n(u) = co and
limy o0 (1(u)/g(u)) P (f () n(u))""* = 0, then

P ( sup Xyt + t) > n(u))

teJ(u)

_ 2A43,,I(1/P) (g(‘u“)>2/ﬂ (n(u)
B B n(u) fu)

2/a
) P(n(u))(1+o(1))

as u — o0.
Proof. The proof is presented in Section 6.4 after the proof of Theorem 4.1. O

Remark 4.2. If D1-D2 are satisfied with f(u),g(u) being constant functions, then
combination of limy—,ee (n(t4)/g(1))B( f (u)/n(1))/*=0 with lim,_,.c n(1)=00 implies
o < f5. In this case Theorem 4.2 is a part of Theorem 1 in Piterbarg and Prisyazhnyuk
(1978).
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5. Exact asymptotics of P(sup, fot Z(s)ds —ct > u)

In this section we find the exact asymptotics of y(u) = P(sup,,{(¢) — ct > u) for
the SRD model. Let G=1/ [;° R(¢)df and B = [ tR(t) dt.

Theorem 5.1. If {(t) possesses the SRD property, then

w( )__(LG.’_QEC'“CGB "("'”(] +0o(1)) asu— oo. (5.1)

Proof. The proof of Theorem 5.1 is presented in Section 6.5. O

Remark 5.1. Since 63(¢)=2 [, R(s)ds, then SRD.2 is equivalent to the fact that 3(r)
is strictly increasing. It ensures that 7 (G exists (Theorem 3.1) and assumptlon
D1 of Theorem 4.1 is satisfied. In the 1anguage of the spectral density function fx(?)
of the covariance function R(¢) we have

t it OO
/ R(s)ds=2/ / cos(xs) fr(x)dxds
0 0 Jo

=2 / SO ey dx (52)
0

Hence if 0 < fz(0) < 0o and fgr(x)/x is non increasing for x > 0, then from (5.2)
assumption SRD.2 is satisfied. Moreover G = 1/(m fz(0)).

Remark 5.2. Using Corollary 3.1 we are able to give an asymptotical upper bound:
lim sup P(sup, 5 &(2) — £ > u) -
u—co  \/R(0)2me=GBe=Gu

This result is consistent with the asymptotical upper bound obtained by Degbicki and
Rolski (1995).

(5.3)

6. Proofs
In this section we prove theorems presented in Sections 2-5.
6.1. Proof of Theorem 2.1

The idea of the proof is analogous to the proof of Pickands lemma presented in
Piterbarg (1996, Lemma D.1) and is based on the fact that

P ( sup Xm ..... ,,N;u(tl,...,tN) > n(“))
(¢

st )ELO,TTY

=% /‘R exp(—1%/2)
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xP Sup XI]],,..J]N;N(IB s ly) > n(u)lim,..‘,m/;u(oa ..,0)=v] dv
(f1, 18 )E[O,TIY

. 2
= ()1 +o(1)) /M xp (w‘ 55@)

n(u)

2
} n(u) — o
xP sup  Cultr,..ostn) > 0| Xy y(0,...,0) = " do,
(f1 et )E[O,TTY

6.1)

and

i ?
uLI'I;O RCXp w — 572_(7)

" = 1)
xP sup Eultr, .o ty) > 0| Xy wa(0,...,0) = n(u) = — | dw
(t1 13 )EL0,TH n(u)

= Ay (T), (6.2)

where (6.1) is a consequence of changing of variables v=n(u)—w/n(u) and the notation
Eultry o uty) = n(u)( Xy, gyt ..o ty) — n(u)) + . Equality (6.2) is a consequence
of the fact that the family of processes

. = ) w
Xu(tla'--atN) = Cu(tlaarN)I (an,...,T]N;LI(O"")O) =n(l/£) - ;’l—(—u—)—> 2
0<t,.. ., tn&T

converges weakly in C[0, T ]N to the Gaussian process

2 & 1<
2
y(t, .- ty) = Ni—zlm(l‘,‘)—ﬁg:lo'm(ti).

The proof of the weak convergence is analogous to the relevant part of the proof of
Lemma D.1 in Piterbarg (1996) and is based on the convergence of finite dimensional
distributions of the appropriate processes and tightness of family y,(,....tv). In the
sequel we argue that y,(f,...,¢v) is tight.

In order to prove the tightness of y,(f,...,¢v) it suffices to show that the se-
quence of centered processes xf,o)(tl,...,tN) = yu(t,. ., ty) — Exu(ty, ..., ty) 1s tight.
Since xﬁ,o)(o,...,O) =0 for all u > 0, then a straightforward consequence of Straf’s
criterion for tightness of Gaussian fields (Straf, 1972) implies that it suffices to show
that for any g, ¢ > 0 there exists 6 €(0,1) and 1y > 0 such that

P sup st usw) = X0t = | < 08V
{(81500esS ) ]| (81 3s SN ) — (215t €O}

(6.3)

for each (11,...,ty) €[0, T and u > ug, where ||(1,..., 7)) =maX;e(y,. N} tl-
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Note that for sufficiently large u
N N
EOL (o tn) = 10(s1, - osm) P < Y on ([t — i) < CPD |t — sy
i=1 i=1

for all (#1,...,tv),(s1,-..,5v) €0, T]N, some constant C > 0 and «; ¢ being the indices
of regularity at 0 of o-%,,(t) respectively. Thus

max Var(3O(s1,- .., s8) — ¥t .. tw))
{081 es SN st Vi (| (81 a8 ) = (1, )| S5} : u

N

<Py o

i=1

which combined with Borell’s theorem gives (6.3). O
6.2. Proof of Theorem 3.1

Before the proof of Theorem 3.1 we need some technical lemmas that are also of
independent interest. We begin with the proof of Lemma 3.1.

Proof of Lemma 3.1. It suffices to note that under notation of Theorem 2.1, for suffi-
ciently large u,

P ( sup X?][,...J]N;lt(tla L IN) > I’l(ll))
(

1t ELO,T WY

T T
SEZP( sup X, nN;u(tl,...,tN)>n(u)>.
=1 ky=1 (

v=1  \Uls tw)ETTY, lhi—1,k]

Now applying Theorem 2.1 to both sides of the above inequality we complete the
proof. [

The following lemmas play a crucial role in sequel.

Lemma 6.1. If the variance function a,zl(t) of a centered Gaussian process n(t) with
stationary increments satisfies C1-C2, then for each C > 1 there exists ¢ > 0 such

that
a2(Ct
32%"52(—(;)‘) >1+e
il

Moreover for each ¢€(0,1) there exists C > 1 such that

an(t)
sup

——— < 1 —e
>0 Grzy(Ct)

Proof. The proof of Lemma 6.1 follows from assumption C2 that o‘,zl(t) is regularly
varying at 0 and at oo and the fact that a,:;(t) is strictly increasing. [
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Lemma 6.2. If family {X,,(t);u > 0} of centered Gaussian processes with continuous
sample paths satisfies DO with A(u) such that limy—.co 4(u) = 0o and

lim ——————-—G%M(u))
)

then for each T >0, 6 > 0 and n(u) such that lim,—.o f(u)/n(u) =1

<172, (6.4)

P ( sup A_’,,;u(s) > n(u); sup )?,,;u(t) > n(u))
s€[0,7] te[d+T,0+2T)

< G T exp(—Crop(3 ) ¥ (n(u))(1 + o(1)) (6.5)
as u — oo. Inequality (6.5) holds uniformly with respect to u for § < A(u) — 2T.
Proof. The idea of the proof is analogous to the proof of Lemma 6.3 in Piterbarg
(1996) and thus we present only the main steps of the argumentation.

Consider the Gaussian field Y, (s, 1) =)?,7;u(s) —|—)f,,;u(t) and let 49 =[0,7], Ass7 =
[6+T,6+2T] for 0 < < A(u) —2T. We have

P ( sup Xpu(t) > n(u);  sup  Xpu(t) > n(u))
]

e[0T tE[O+T0+2T]
<P (( )esAupA Yu(s, 1) > 2n(u)) . (6.6)
$,0)€do X A5y
Note that for each s € Ay, t € 4s+r and sufficiently large u
a3(|t —s|)
Var(Y,(s,t)) =>4 — 4%—)—— >2 (6.7)
and
ay(jt = s|) ,(9)
Var(Y,(s,t)) <4 — < (6.8)

Sy T Py
where (6.7) follows from (6.4). Let Y (s, t)= Y.(s,t)/+/Var(Y,(s,t)) and observe that

P ( sup Y.(s,t) > 2n(u)>

(5,8)EAg X Asyr

<P ( sup 17,,(s,t) > Znu) ) . (6.9)

(s0&tx ez Ja-aorrw

Moreover for each s, s1 €4y and ¢, 1) €As4r

- _ - 2 4 v _ . 2
E(Yu(s,t) = Yu(s1,11))” < __Var( Yu(5.0)) E(Yu(s,t) — Yu(s1,11))

< 4(|E(X,1;”(S) - /?r];u(sl ))2 + [E(Xr];u(t) - )?)];u(tl ))2)

< E([E(Xn;u(cos) = Xyu(Cos1))” + IE(Xrl;u(cot) ”‘Xn;u(COtl))“)a (6.10)
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where the existence of constant Cy in (6.10) follows from Lemma 6.1. Hence for
X,; lu)(t) X,gzu)(t) being mdependent copies of the process X 7u(t) the covariance function
of the process \/-(X ,u(Cgs) +X,§,,,(Cot)) is dominated by the covariance function of

u(s,t). Thus from Slepian’s inequality (see Piterbarg, 1996, Theorem C.1)

P sup Yu(s,1) > 2n(u)

(5,1)Edo X A5y ’ \/4 = 03(0)/f*(u)

2n(u)
<P| su (XU(Cos) + X 2)(Cot)) > (6.11)
e V2 x/'z‘ T A= 620y )
- (CoT)P 2nw) (1+0(1)) (6.12)
V4 — 03(8)/2u)
< G T? exp(—C, ai(é))‘[’(n(u))(l + o(1)), (6.13)

where (6.11) holds uniformly with respect to u for 6 < 4(u) — 27T and (6.12) follows
from the combination of Theorem 2.1 and Lemma 3.1. Thus the assertion of Lemma
6.2 follows by combining (6.6), (6.9) and (6.13). O

Proof of Theorem 3.1. Since #,(T) is subadditive, it suffices to prove that

Hn(T)
T

lim inf > 0.
T—o0

The above follows from the same argumentation, as in the proof of the existence of
classical Pickands constants presented in Piterbarg (1996, the proof of Theorem D.2),
applied to the family X, (t) =n(u+1t). O

6.3. Proof of Theorem 3.2

Let 6 > 0 be given. Define

29 1y = m(ay, () + (1 +6))
B Gm(arn (u) +(1+0))
(0) ( ) 172(0-172 (M) + (1 + é)t)
1]7 H

o (ot () + (1 + 8)t)

and observe that from C1-C2 the inverse functions o, (u) T (u) are well defined.
From Lemma 6.1 there exists ¢ > 0 such that

ot ((1+0)) = (1 + &) 0y, (t) (6.14)

for each t = 0.
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Let T > 0 be given. From Lemma 2.1 processes X fl(?;)u(t), X ;f?u(t) satisfy DO with

F(u)=+2u, Au)=T and n=mn, or i =n,, respectively. Thus for s,z € [0, T] and
sufficiently large u

~(3) 1 0,2,2((1 + )|t —s[)

1= Cov(R2L (1), X (s)) = 1

nu 2‘“2
> (1 + )————”’W*S') (6.15)
>(1+ ).’M’
>1- ov(Xf,?l,(t) Eoods)), (6.16)

where (6.15) follows from (6.14) and (6.16) follows from the fact that o%l(t) < 0',2,2(2‘).
Hence for each 6 >0, t >0 and sufficiently large u we can apply Slepian’s
inequality

113’( sup mu(t)>\/—u>=ﬂ5°<supX (t)>\/§u>

te[0,(14+8)T) tEN0,T]

>P ( sup X,“ TOES \/_u> (6.17)

tef0,7]

To complete the proof it is enough to note that from Theorem 2.1

P( sup ,7, O () > \/"u) = A (1 + 8)THP(V2u)(1 4+ o(1))

tE[0,(14+8)T]

and

P ( sup X,“ (1) > \/_u> = #, (T)P(V2u)(1 + o(1))

te[0,T

as u — oo. Combining this with (6.17) we obtain that J#,((1 + 0)T) = 4, (T) for
each 6 > 0. Having in mind that £, =limr_.oc #5,(T)/T and #,, =limr_, o #3,(T)/T
the proof is completed. [

6.4. Proof of Theorem 4.1

The idea of the proof of Theorem 4.1 is analogous to the proof of Theorem D.3
(Piterbarg, 1996) and thus we present only the main steps of the argumentation.

In the proof we denote for short 6(u) = P(sup,e s,y Xpu(t + ) > n(u)). From D2
for each £€(0,1) there exists uy such that for u > ugy and t € J(u)

O(uw) < P | sup )f',,;u(z‘ + 1) = > n(u) | =01(u)

reJuw) L+ (1 =)
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and

Ou) =P sup)f,,;u(t —+ tu)—-————MT > n(u) | = 6x(u).
ey 1+ (1 + S)W

The rest of the proof consists of two parts, where an upper and lower bound for 6(u)
is derived.
1°. (Upper bound) Our goal is to prove that

lim sup ) <1
u—oo 2(C(1/B)/BYAW)" " ¥(n(u)) ~

Since O(u) < 6,(u), we focus on the asymptotics of 6;(u). Let T > 0 be given and
let A(u) = (g(u)log(n(u))/n(u))*®. Note that A(u) — 0o as u — oco. We consider a
skeleton Ji = [kT, (k + 1)T] of R and define events

Con < [ (Rl + 1) > n@)(1 + (1 — )|k + DT/} k=—1,-2,...
U ) =
¢ max,e, { Xt + 1) > n(u)(1 + (1 — e)|kT|ﬁ/g2(u))} k=0,1,....

(6.18)

(6.19)

Now using the Bonferroni’s inequality and Theorem 2.1 we get
01(u) < > P(Ce(1))

—(AW)T)—1<k<A(u)/T

g
= > A (TP (n(u)(l +(1 —a)MI—D (1+0(1))

2
— (A T)~1<k<0 g:(u)

B
+ > %ﬁ(T)lP<n(u)<1+(1—8)|kT| )>(1+0(1>>-

2
u
0<k<a)/T g ( )

BECCL TN

-l = B
< TA(u) TA(u) exp(—(1 — e} TA(w)|(k + D))

—(4(u)/T)—1<k<0

x(I+o(1))

(T ¥ (n(w) > TA(u)exp(—(1 — e)(TAw)k )P )(1 + o(1))

TA(”) 0<k<a(u)/T

(6.20)

as u — oo, where 4(u)=(n(u)/g(u))*# Since lim,—_, oo 4(u)=0 (see D3 and assumption
that lim,_,o f(u)/n(u) = 1), then letting # — oo and T — oo in such a way that
TA(u) — 0, we obtain

lim sup Gl(u), <1
umoo 2P (n(u))/A()) [° e=(0=0 dx.

Using that f f0°° e dx = I'(1/B) and letting ¢ — 0 we obtain (6.18).
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2°. (Lower bound) To get
0(u)

lim inf , : =1 (6.21)
u—oo 25,(L(1/B)/BUA)) ™ ¥ (n(u))
we have to adapt the preceding proof as follows.
Define events
L max,es, {Xpult + 1) > n()(1 + (1 + )|kT|F /g% (u))} k=-1,-2...
Uu) =
g maxee, (Dyult + 1) > n()(1+ (1 + &)k + DTF /@) k=0,1,... .
(6.22)

Using Bonferroni’s inequality

h(u) = Z P(Cp(u))

—(A(u)/TYSk<(4(u)/T)—1
-2 Z P(CL(u) N Cy(u)).
—(A(u)TY <k <1< (Au)/T)—1
Thus it suffices to prove that
lim Z-(A(u)m<k<1<(4(u)/r)—1 P(Cr(u) N Cy(u)) —0
u—00 (A(ll))'—l 'P(n(u)) ’

which, using Lemma 6.2, follows by the same argumentation as the estimation of
the double sum in the proof of Theorem D.1 in Piterbarg (1996). This completes the
proof. O

Proof of Theorem 4.2. The proof follows from the straightforward application of
Theorem 4.1 to the family

- 2/n

6.5. Proof of Theorem 5.1

The idea of the proof of Theorem 5.1 is based on an appropriate application of
Theorem 4.1. Namely since

W) =P <supC(t) —ct > u) =P (sup@ —t> E)
120 120 C c

it suffices to give the proof for ¢ = 1. Thus without loss of generality we assume that
c=1.
We rewrite

P (sup(C(t) —1) > u) =P (such;,,(t) > m(u)) ,
120 120

where Xy, (1) = ({(¢)/(u + t))m(u) and m(u) =min; 5o (u + 1)/o(2).
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Remark 6.1. Condition SRD yields

t S
a%(r)=z// R(v)duds:zt——ZB-l—r(t), (6.23)
- o Jo G

where
oo
K1) = 2/ (s = HR(s)ds = o(t™")
t
as t — oo (see Ibragimov and Linnik, 1971). Hence

1
d%(t)zz/ R(v)dv = 2 +0o(1) (6.24)
5 0 G

as t — oo and o’%(t) = 2R(1).

Lemma 6.3. If the variance function crf(t) of the process {(t) satisfies C1-C2, then
for
{h(u) + 1)

Kol =2 Gy v 1)

where h(u) is such that limy—.co h(u) = oo, there exists constant C > 0 such that for
each Ist =1[6,0 + T1 C [ — h(u)/2, h(w)] and sufficiently large u

P (sup X';;u(t) > w) <P (sup X;,,(Ct) > w) (6.25)
t€lsr t€lor
for all w > 0.

Proof. The idea of the proof is based on Slepian’s inequality. Let s, t € [y 7. Hence
for sufficiently large u we have

S+ o, t+0€lsr C[— h(u)/2, k()] (6.26)
From the definition of X ru(t), for sufficiently large 1 we have
E(X pu(t +0) — Xpuls +6))°
=2(1 = Cov(Xy(t + 0), X puls + 8)))

~ a3(Jt —s))
" ou(h(u) + 5 + 8)ar(h(u) + t + 5)

_(og(h(u) + 1+ 0) = ar(h(u) + 5+ 9))*
oe(h(1) + 5 + 0)oc(h(u) + 1 + )

(6.27)

From (6.26) it follows that A(u)4-s+0, h(u)+t+3 > h(u)/2 and since o¢(¢) is increasing,
the expression in (6.27) is less or equal than ag(lt—sl)/(ag(h(u)/2)ag(h(u)/2)). Now by
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Remark 6.1 and Lemma 6.1, there exist constants C;, C> > 0 such that
a3(|t - s) o3|t — s)) dH Gt — s))
o (h(u)/2)o:(h(u)j2) ~ ' oz(h(u))ac(hw) ~ o (h(uw))o(h(u)

Furthermore, by Lemma 6.1 and Lemma 2.1, there exists constant C > 0 such that the
above is less or equal to

2(1 = Cov(¥ u(C), X 1u( C5))) = E(X 1 C1) = X 1 C))P.
Now it is enough to use Slepian’s inequality to complete the proof. O

Lemma 6.4. If {(t) possesses SRD property then, for sufficiently large u, function
su(t)=(u+ t)z/oig(t) attains its minimum at the unigque point t, such that

ty=u(l+o0o(l)) as u— oo. (6.28)

Proof. First we prove the uniqueness of the maximum of s,(¢). The idea of the proof
is to show that for sufficiently large u the equation

U0 =0 (629)

is satisfied for exactly one point ¢ = f,.

Let ¢(t) = 2(a§(t)/d§(t)) — 1. Since sj(¢) = (203 (t)(u + 1) — 63 () (u + 1)*)/(u + 1),
then (6.29) is equivalent to the fact that, for each sufficiently large u, ¢(¢) = u holds
for exactly one point t =t,.

Thus, using that lim,_,¢ ¢(¢)=0, it is enough to prove that ¢(z) is ultimately strictly
increasing and lim;_,o ¢(¢) = 0.

It follows from the fact that due to SRD (see also Remark 6.1) we have
lim/— 00 a?(t)&%(t) =0 and hence

ag(t)ag(t)>

=1. 6.30
(63N (6:30)

lim ¢'(t) = lim (1
11— t—

(o]

In order to prove (6.28) note that from (6.23) and (6.24) we have (o-%(tu)/d%(t“))z
ty(1 4+ 0o(1)) as u — oo. Since for the point ¢, we have

26?(1‘”)

63 (1)

then the proof of (6.28) is completed. [

¢(tu) =

—ty=u

In the sequel, #, will denote the point at which s,(¢) = (u + t)z/af(t) attains its
minimum.

Proposition 6.1. If {(¢) possesses SRD property, then
m? (1) = 2Gu + 2G*B + o(1) as u — oo. (6.31)



170 K. Debickil Stochastic Processes and their Applications 98 (2002) 151-174

Proof. The idea of the proof is to find asymptotical upper and lower bounds for m(u)
as u — 00.

Let 6 €(0,1) be given. From Lemma 6.4 for sufficiently large u
(u+ 1)
~ min 5 .
tE[(1=3)tuy(1+0)t] ”c(t)

m(u) =

(6.32)

Following Remark 6.1 and Lemma 6.4, for sufficiently large u and ¢t €[(1 — )z, (1 +
0)t,], we have

2 2
o}(t)< =t —2B+ = (6.33)
: G u
2 2
(t) —t—2B— = (6.34)
Combining (6.32) with (6.33) and (6.34) we obtain
(u+1)* 5 2G2
< =2 2B —_—
mu) < te[(1— o)tu (1+5)r., (2/G)Yt — 2B —2/u Ou+28G" +
2 2
m(u) > Wty G482 28

tel(1— o)t,,(1+o)t,,] (2/GYt —2B+2/u

for sufficiently large u.
This completes the proof. [

Lemma 6.5. If {(¢) possesses SRD property, then the family Xz, (t)=(((t)/(u+1))m(u)

Sulfills conditions D1-D2 with B =2, g(u) = V2(u + t,), f(u) Goy(ty), n(t) =
(G/V2){(t) and

J(w)=[— 4(u), A(u)), (6.35)
where A(u) = (g(u)log(m(u))/m(u))?/8.
Proof. Note that X;;u(t +t) =L+ t,))o:(t + t,) and (A(u)/ty) — 0. Thus D1 is
satisfied for f(u)= Goy(t,) and n(t) = (G/V/2){(t). Moreover

ot +t,)
ox.. (t+ 1) = g
¥ ) = m(u) ————= nrrtr,

Hence
D, 1) = 0, (¢ + 1) = 1

26 (1, + 0)u + 1)

B or(t)u+t,+1) (6.36)

where (6.36) follows from the expansion of ¢(f+1,) into a Taylor series with respect
to t where 6 €[ — A(u), 4(u)]. Since o‘;(z‘)EC2 (see Remark 6.1) and

GHx)  1(6E(x))

G = T d oi@)
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then dividing (6.36) by > we obtain

dut)  GHwAOwAn) 1 (G + 0)(u+15)
2 oyt + oyttt + 1) 803t + 0)ay(t)(u + 1+ 1)
= Sl - Sg.

Now from Remark 6.1 we immediately get that Sg/(\/i(u +t)) — 1 asu — oo
uniformly with respect ¢, 6 € [ — A(u), 4(u)]. Moreover uniformly for 8 € [ — A(u), 4(u)]

Si 26Ut +0)adt +0) 261+ 0)i(t + 0)
S ot OG0 (Gt + 0))

(6.37)

as u — 00, where (6.37) is a consequence of SRD. This completes the proof. [

Lemma 6.6. If {(t) possesses SRD property, then for J(u) defined by (6.35)

P ( sup Xr(t) > m(u)) =P ( sup Xeu(t+t,) > m(u)) (I4+0o(1)) (6.38)

t€[0,00) teJ(u)
as u — o0.

Proof. To prove (6.38) it is sufficient to show that

P < sup KXea(t + 1) > m(u)) =o(¥(m(u))) (6.39)

tel—ty,00N\J (1)

as u — 0o. Let 4(u) and J(u) be the same as defined in Lemma 6.5. We have

P ( sup X.:;u(t + tu) > nz(”))

tE[—ty,00)\J (1)

<P ( sup  Xpu(t+1,) > m(“))

1E[~t—14/2]

+P < sup Xeu(t +1,) > m(u))

1E€[—1/2,— A()]I[4(u), 1)

+P ( sup Xpu(t + ty) > m(”)) .
tE[ty,00)
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Let oy, (4) =maX,eg[—, 00)\J(u) Oxy, (¢ + 1,). Note that from Lemma 6.4 and Lemma 6.5
for sufficiently large u

Iy
A7(u) < 1

. A < 1 - = X )
o) 20+ 1?1+ log?(m(u))/m2(u)

From Lemma 6.3 there exists C > 0 such that for sufficiently large u and [i,i + 1] C
{[ - tll/za —A(u)] U [A(u)>tll]} we haVC

2
P ( sup Keult + 1) > m(u) (1 4 log (mlu)) (’”(“))>>

tE€[L,i+1] m2(u)
_ log?
<P sup XpW(Ct+1,)>m(u) [ 1+ og E”l(u)) .
1€[0,1] m2(u)

Hence

P ( sup KXot +2,) > m(u))

tE[—tu]2,— A()]U[A(u), 1]

2
< Z P( sup Xt + 1) > m(u) (1+1—°§r;(2%3”—)—)>>
1

“ €[ ~i,—i+1]
Au)—1<ig -é‘-)—

} ’ log®(m(u))
+ Z P ( sup XC;u(t +t) > m(u) <l * W))

A —1 <E<ty+1 tE[LI+1]

2
<P ( sup Xpu(Ct + 1) > m(u) (1 4 log'(m(u) “’““”))

1€10,1] m2(u)

log?(m(u))
m2(u)

=1, Const ¥ <m(u) <1 + >> (1 4+ 0o(1))=o(¥(m(u)). (6.40)

The proof of

P ( sup  Xp(t +1,) > m(u)) +P ( sup Xy, (t+t) > m(u)>
tE[—tu,—1u/2] te(ty,00)
=o(¥(m(u)) (6.41)
follows in a straightforward way from Borell’s inequality and the fact that

sup aﬁr,u(t +t,) < 1 — Consty,
t€[—ty,—ta/2)U[t,00)

where Consty > 0 is a constant. Thus (6.40) combined with (6.41) completes the proof.
O
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Proof of Theorem 5.1. From Lemma 6.6 we have

P (sup lt)y—1) > u) =P (supX;;u(t) > m(u))
120

120

=P ( sup Xrw(t) > m(u) | (14 0o(1)).
teJ (1)

Thus
P (sup(C(t) —1) > u)

=0

=2,}{‘(‘@,\/§):I’(1/2) ( m(u)
2 V2(u + t,)
2y/u

=VAA G V)1 +o(1)

—2/B
) P(m(u))(1 + o(1)) (6.42)

Ko e
= —M(Géﬁ” =08 e=Gu(1 + o(1)), (6.43)
where (6.42) and (6.43) follow from Lemma 6.5 and Theorem 4.2 and the fact that

r(1/2) = +/=. This completes the proof. O

Acknowledgements

The author would like to thank Professor Tomasz Rolski for his help, many stim-
ulating ideas, discussions and remarks during the preparation of the manuscript, and
to Professor Seren Asmussen for careful reading of the manuscript. The author is also
grateful to Professor Vladimir Piterbarg for many helpful remarks which considerably
improved the presentation of the paper.

References

Bingham, N.H., Goldie, C.M., Teugels, J.L., 1987. Regular variation. Cambridge Univ. Press, Cambridge.

Debicki, K., 1999. A note on LDP for supremum of Gaussian processes over infinite horizon. Statist. Probab.
Lett. 44, 211-219.

Debicki, K., Rolski, T., 1995. A Gaussian fluid model. Queue. Syst. 20, 433-452.

Debicki, K., Rolski, T., 2000. Gaussian fluid models; a survey. In: Symposium on Performance Models for
Information Communication Networks, Sendai, Japan, 23-25.01.2000.

Hisler, J., Piterbarg, V., 1999. Extremes of a certain class of Gaussian processes. Stochast. Process. Appl.
83, 257-271.

Ibragimov, LA., Linnik, Yu.V., 1971. Independent and stationary sequences of random variables.
Wolters-Noordhoff, Groningen.

Kulkarni, V., Rolski, T., 1994. Fluid mode! driven by an Ornstein-Uhlenbeck process. Probab. Eng. Inf. Sci.
8, 403-417.

Massoulie, L., Simonian, A., 1997. Large buffer asymptotics for the queue with FBM input. Preprint.

Narayan, O., 1998. Exact asymptotic queue length distribution for fractional Brownian traffic. Adv. Perform.
Anal. 1 (1), 39-63.



174 K. Debickil Stochastic Processes and their Applications 98 (2002) 151-174

Norros, 1., 1994. A storage model with self-similar input. Queue. Syst. 16, 387-396.

Pickands III, J., 1969a. Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc.
145, 51-73.

Pickands III, J., 1969b. Asymptotic properties of the maximum in a stationary Gaussian process. Trans.
Amer. Math. Soc. 145, 75-86.

Piterbarg, V.I.. 1996. Asymptotic Methods in the Theory of Gaussian Processes and Fields. Translations of
Mathematical Monographs, Vol. 148, AMS, Providence.

Piterbarg, V.I., Prisyazhnyuk, V., 1978. Asymptotic behavior of the probability of a large excursion for a
nonstationary Gaussian processes. Teor. Veroyatnost. 1 Mat. Statist. 18, 121-133.

Straf, M.L., 1972. Weak convergence of stochastic processes with several parameters. Proceedings of the
Sixth Berkeley Symposium in Mathematics and Statistic Probability, Vol. II, pp. 187-221.



